6up【真.草枝摆】

新闻资讯

产品中心

6up锂离子电池正负极材料的现在和未来-正极篇



  锂离子电池可以说是目前世界上应用最成熟最广泛的新能源,如手机电脑等便携式电子产品,电动汽车,电动工具,储能项目。特别是当前中国政府和资本疯狂投资支持新能源汽车和动力电池产业的发展,简直到了如火如荼的地步。但是放眼未来,锂电产业还有很长的一段路要走,比如高能量密度体系的开发,成本的进一步降低,资源的回收和利用等问题摆在我们面前。

  对LCO的改性方面:对许多不同金属(Mn, Al, Fe, Cr)作为钴掺杂剂/部分代用品进行过研究,虽然证明有一些效果,但对性能的提升有限。各种金属氧化物的涂层(Al2O3, B2O3, TiO2, ZrO2),因为他们的机械和化学稳定性可以减少LCO的结构变化和与电解质的副反应,增强的LCO稳定性,甚至对深循环性能特性有一定改善。

  LNO具有和LiCoO相同的晶体结构和275mAh/g的类似理论比容量,与LCO相比主要在成本是低很多,但是LNO的问题在于Ni2 有替代Li 的倾向在脱嵌Li的过程中会堵住Li的扩散通道。安全性和稳定性方面LNO比LCO更容易造成热失控。另外在高SOC条件下的热稳定性差可通过Mg掺杂来改善 ,添加少量Al能提高两者的热稳定性和电化学性能.

  LiNi0.8Co0.15Al0.05O2 (NCA)目前已经被商业化应用,例如松下为Tesla开发的动力电池。其优点在于拥有较高的比容量200mAh/g和相对LCO更好的日历寿命。但在国内刚刚处于起步阶段。关于其失效模式有报道说其在升高的温度下(40-70℃)容量衰减,是由于SEI和微裂纹的生长。

  LMO由于其稳定性和较低的成本优势也得到了广泛的应用,但是其主要缺点是较差的循环性能,原因是在Li脱出的过程中其层状结构有变为尖晶石结构的趋势和循环过程中Mn的溶解的不利影响。具体讲是由于Mn3 的歧化反应形成Mn2 和Mn4 ,2价Mn离子可以溶解在电解质中破坏负极的SEI,所有含Mn的正极都存在这个反应。伴随着含Mn电极的电池老化,电解质和负极中Mn的含量逐渐增加,石墨负极阻抗变大,这一点已经很明显。但对比LTO负极没有显著的变化(如下图红色曲线)。改性方面一般采用阳离子参杂改善LMO的高温循环稳定性。

  转化电极在锂化/脱锂期间经历固态氧化还原反应,其中结晶结构发生变化,6up伴随着断裂和重组的化学键。转化电极材料的完全可逆电化学反应通常如下:

  由于中等电压平台和较高的理论比容量,金属氟化物(MF)和氯化物(MCI)近来也已经被积极地研究。然而,MF和MCL通常有比较大的电压滞后,体积膨胀,副反应,和活性材料的溶解(如下图)。大多数MF,包括FEF3和FEF2,是因为金属卤键的高度离子特性引起的带隙大而带来的较差的电子传导性。但他们的开放式结构可以支持良好的离子传导 。相同的原因,氯化物也具有差的电子电导率。

  硫具有1675mAh/g的高理论容量,同时还具有成本和丰富的储量优势。然而,缺点是S为主的正极从低电势,低电导率,中间体反应产物(多硫化物)在电解质的溶解,和(在纯S的情况下)非常低汽化温度,其在真空下干燥电极引发S损失。而硫大约80%的体积变化,这可能会破坏碳复合材料在电极的电接触 。

  以上这些比较新的材料肯定还有很长的产业化道路要走,个人看法是对现实生产的指导意义不大,但历史的车轮滚滚向前总有一天会实现甚至超越既定目标。

  荐:发原创得奖金,“原创奖励计划”来了!发现北京华彩瞬间,有奖征文邀你分享!

  4.将“商户单号”填入下方输入框,点击“恢复VIP特权”,等待系统校验完成即可。

  4.将“商家订单号”填入下方输入框,点击“恢复VIP特权”,等待系统校验完成即可。